www.462211.com全面梳理!国产IC尖子生AI芯片 VS 落后
发表时间:2020-01-29

  上周五(1月10日),芯师爷发布了《超详尽!芯片全景图和国产数字芯片的机会》文章,本篇为该文章下篇,作者继续深入剖析国产数字芯片与模拟芯片的产业。

  人工智能深度神经网络中,最关键的能力是“训练”和“推理”。因此AI芯片可分为训练芯片和推理芯片。

  “训练”是从海量的数据中完成特征的学习,这需要极高的计算精度、较大的内存和访问带宽,主要应用在云计算、数据中心上。英伟达凭借GPU成为AI云端芯片的龙头,英特尔也通过大举收购AI芯片企业与英伟达积极竞争。其他AI云端芯片主要有谷歌的TPU、寒武纪NPU、阿里巴巴的含光800、华为昇腾910、百度昆仑等。

  “推理”取决于场景需求,需在速度、能耗、安全、硬件成本等满足不同的垂直场景需求,在云端、边缘端均有运用。根据应用场景的不同,典型的推理芯片有依图科技的云端芯片“求索”;云知声、探境科技的语音识别芯片;地平线)智能的自动驾驶芯片等等。

  AI芯片按照使用场景可以分两类:一类是训练和推理都能够适配的CPU、GPU、FPGA;另一类是推理加速芯片,比如寒武纪的NPU、深鉴科技DPU、地平线的BPU,这类芯片既有产品,又提供IP让其他开发者将深度学习加速器集成到SoC内。

  人工智能算法的发展与芯片的发展相辅相成,芯片算力的不断提升为AI算法的发展提供了基础。类比一辆汽车,算法是车轮,可以跑得更快;算力是引擎,可以跑得更远。

  早期的芯片由于算力不足导致了人工神经网络的发展陷于停滞;20世纪80年代后,神经网络算法初现雏形,但算法都是通过台式机来实现,芯片的算力仍然不足,鲜有线世纪,随着GPU及配套技术的发展,深度学习算法得益于GPU的强大算力得以迅速进步。

  2013年,Hinton的团队采用GPU架构结合现在计算机视觉常用的卷积神经网络(CNN)算法,在ImageNet的比赛中,一举将识别错误率降到18%。2014年陈天石博士(寒武纪创办人)团队提出的DianNao论文,深度学习领域才出现第一块针对人工智能加速的专用芯片设计,人工智能芯片开始了专用芯片加速的时代。

  摩尔定律的减缓意味着:算法性能高速发展和机器算力提升缓慢的矛盾逐渐开始显现,在不牺牲算法性能并且充分运用芯片算力的需求下,AI的落地针对应用场景和业务逻辑定制AI芯片成为了发展方向——算法即芯片时代已经到来。

  2.GPU GPU并行计算的特性决定了其作为AI芯片被广泛运用于AI算法加速,也使英伟达成为AI芯片的龙头。

  受益于AI的极速发展,英伟达在云端加速深度学习算法芯片市场几乎占垄断地位。英伟达2016年第一个推出专为深度学习优化的Pascal GPU,2017年推出了性能更优的新GPU架构Volta,及神经网络推理加速器TensorRT 3。

  另外,由于英伟达发布的针对开发者提供的并行计算平台CUDA,被广泛认可和普及,积累了良好的编程环境,英伟达的GPU是目前应用最广的通用AI硬件计算平台。AWS、Facebook、Google等世界一级数据中心都使用英伟达的芯片进行AI加速。

  GPU已在云端作为AI“训练”的主力芯片,在边缘、终端的安防、汽车等领域,GPU也率先落地,是目前应用范围最广、灵活度最高的AI硬件。

  虽然目前英伟达在AI芯片领域风头正劲,不过顶着“应用最广泛AI芯片”光环的英伟达,也还面临FPGA和ASIC等专用化程度更高、计算力更强的芯片的挑战。

  3.FPGA FPGA 现场可编程门阵列,拥有大量可编程的逻辑单元,可以根据需求来制定有针对性的算法设计。

  性能方面,FPGA劣于GPU,但通过编程语言自由定义门电路和存储器之间的布线,生成算法专用电路,同时利用门电路直接并行运算,实现了算法加速。FPGA目前是AI芯片非常合适的方案之一。

  FPGA的优势是在写入软件前它有胜于CPU的通用性,写入软件后它有类似于ASIC的表现,是算法未定型前的阶段性最佳选择。FPGA相比GPU功耗低,同时相比ASIC具有更加灵活编程的特点。

  赛灵思(Xilinx)是FPGA芯片技术的开创者,从2011年起,赛灵思提出全编程的理念,作为FPGA行业长期的霸主,赛灵思拥有超过2万家下游客户。

  在现阶段云端数据中心业务中,FPGA以其灵活性和可深度优化的特点,有望继GPU之后在该市场爆发,微软、AWS、华为云、阿里云等均在云端加入FPGA进行算法加速。画面渲染、基因组测序、金融风险分析等领域的定制化算法可以低成本的在云端写入,香港马会资料大全开奖结果查询,利用FPGA的加速实现场景应用。除了云,在边缘计算领域,FPGA也应用于人工智能创业公司深鉴科技、瑞为等的机器学习场景中。

  2018年赛灵思重磅推出全新一代AI芯片架构ACAP,以及采用ACAP架构的首款代号为Everest的AI芯片,正面“宣战”英特尔和英伟达。

  同年赛灵思收购国内三大AI芯片独角兽之一的深鉴科技,该公司主攻终端人工智能,所采用基于FPGA来设计深度学习的加速器架构,可以灵活扩展用于服务器端和嵌入式端。

  英特尔已经错失了移动设备的崛起,为了不再错过人工智能而加速了AI芯片领域的布局。

  为了增强在AI芯片领域的竞争力,2015年12月英特尔斥资167亿美元收购了Altera公司,这是英特尔有史以来金额最大的一次收购,意味着英特尔希望实现CPU和FPGA深层次结合来布局AI芯片市场。

  2017年英特尔又收购Mobileye,希望通过整合AI算法以获得关键的优势。2018年,英特尔宣布收购芯片制造商eASIC,提高FPGA速度,降低FPGA成本和能耗需求。

  英特尔通过积极的收购将自己提升到AI芯片“玩家”的前列。当前英特尔有两套FPGA的战略:打造CPU+FPGA混合器件,让FPGA与处理器协同工作;基于Arria FPGA或Stratix FPGA打造可编程加速卡。微软在2018年的Build大会上公布的Project Brainwave深度学习加速平台,就是基于英特尔 Arria FPGA和Stratix FPGA芯片所打造的。

  3.ASIC ASIC是一种为专用目的而定制设计的芯片,在大规模量产的情况下相比于FPGA有性能更强、体积更小、功耗更低、成本更低等优点。

  ASIC的高研发时间成本和高技术商业化风险成了未来推广之路的一大障碍,但其体积小、成本低、功耗低、高可靠性、保密性强、计算性能高、计算效率高等优势等优势成为目前AI芯片的必争之地。

  对于AI芯片的未来,突破冯·诺伊曼结构是发展方向。由于深度学习的基本操作是神经元和突触的处理,而传统的处理器指令集(包括x86和ARM等)是为了进行通用计算发展起来的,其基本操作为算术操作(加减乘除)和逻辑操作(与或非),往往需要数百甚至上千条指令才能完成一个神经元的处理,深度学习的处理效率不高。

  这时就需要突破经典的冯·诺伊曼结构。神经网络中存储和处理是一体化的,而冯·诺伊曼结构中,存储和处理是分离的,分别由存储器和运算器来实现,二者之间存在巨大的差异。当用现有的基于冯·诺伊曼结构的经典计算机(如x86处理器和英伟达GPU)来跑神经网络应用时,就不可避免地受到存储和处理分离式结构的制约,因而影响效率。虽然目前FPGA和ASIC可满足部分应用场景所需,可是在长久的规划上,新一代架构的类脑芯片、存算一体芯片将会作为解决深度学习计算需求的底层架构 。

  (1)谷歌的张量处理器TPU TPU采用了脉动阵列的组织方式。2016年,谷歌TPU在AlphaGo与李世石一役中横空出世,使AlphaGo“思考”棋招和预判局势,处理速度比GPU和CPU快上几十倍。2018年GoogleI/O开发者大会上正式发布了TPU 3.0,其性能宣称比去年的TUP2.0提升8倍之多,达到每秒1,000万亿次浮点计算,比同时期的GPU或CPU平均提速15-30倍,能效比提升30-80倍。

  寒武纪出身中科院,由陈天石、陈云霁兄弟在2016年3月创立。寒武纪在云端芯片和终端芯片均有布局。

  NPU中DianNaoYu指令直接面对大规模神经元和突触的处理,一条指令即可完成一组神经元的处理,并对神经元和突触数据在芯片上的传输提供了一系列专门的支持。

  终端AI芯片采用IP授权模式,其产品Cambricon-1A是全球首个实现商用的深度学习处理器IP。目前寒武纪的IP面向智能手机、安防监控、无人机、可穿戴设备以及智能驾驶等各类终端设备。

  中星微是第一家中国自主研发制造的芯片的企业,在 2001 年成功研发出了具有自主知识产权的芯片,2003 年占有全球 60% 的市场,同时也是第一家 2005 年成功在纳斯达克上市的国产芯片企业。Vimicro AI 代表产品,星光智能 SoC 芯片——星光 1-5 号,最新代表第二代神经网络处理器芯片星光智能二号。

  阿里在 2018 年收购中天微后,在今年推出首款云端 AI 加速芯片含光 800,号称目前业界性能最强的RISC-V架构芯片之一。同步本港台现场报码答辩。但和华为鲲鹏类似,主要为自产自用状态。www.462211.com

  (4) 自动驾驶领域:英特尔、英伟达和国内创企地平线年,英特尔收购的视觉处理芯片企业Movidius,其研发的VPU也是ASIC芯片。

  目前AI在手机里面主要是辅助处理图形图像的识别(比如拍照的快速美颜)及语音语义的识别、面容识别等场景。但目前此类应用对AI算法处理速度的要求并不高。同时手机对功耗要求极高,ASIC低成本、低功耗、低面积将占据核心优势。

  依图科技提出“算法即芯片”的造芯思路,即基于问题,基于场景,用对算法,并为此设计芯片。基于此,依图运用其在机器视觉领域独特算法优势打造出云端视觉AI推理芯片“求索”,构建视频解析系统、视频解决方案,面向应用场景直接进行优化,提供智慧城市、智慧交通、智能零售的解决方案,使AI算法根据特定的场景和需求真正实现落地。

  传统的芯片制造厂商:Intel,Nvidia 和AMD。他们的优势在于在已有架构上对人工智能的延伸,对于硬件的理解会优于竞争对手,但也会困顿于架构的囹圄;科技/互联网巨头在科技上层生态的构建者进入芯片设计,比如苹果、Google和阿里巴巴,优势在于根据生态灵活开发定制各类ASIC,专用性强;AI初创公司,某些全新的架构比如神经网络芯片的寒武纪,因为是全新的市场开拓,具有后发先至的可能。

  作为智能手机的核心,特别是5G时代的到来,移动处理器芯片是几大厂商的竞争之地。华为、联发科、高通、三星、苹果目前是移动处理器芯片的主要玩家。

  移动设备决定了低功耗、高效能是移动处理器芯片的必然要求,各大厂商的芯片产品均为SoC(System

  5G标准制定后,各大厂商先后发布了自家的5G通信方案。5G芯片目前有两种形式:5G SoC和外挂5G基带。5G SoC即将5G Modem(调制解调器)集成于手机处理器平台中,外挂5G基带则将5G Modem置于处理器平台外部,而非集成。

  虽然5G芯片国产率不高,但国内厂商也在5G芯片领域做出了积极贡献。除华为在5G标准制定和5G推进方面有极大作为外,OPPO和vivo也对5G做出了巨大贡献。在5G必要专利排名中,OPPO作为唯一一家纯手机终端厂商上榜;在5G的研发道路上,OPPO也实现了多个第一,如率先实现基于3D结构光技术的5G视频通线G微博视频直播等。vivo则与三星合作,前后共投入了500多名专业研发工程师,历时10个月,将积累的无形资产多达400个功能特性(其中modem相关占极大比例)补充到三星平台,联合三星在硬件层面攻克了近100个技术问题,与三星一起提前完成产品的联合设计研发。

  现实中一切的信号,包括光热力声电等都属于模拟信号,例如麦克风能将声音的大小转换成电压的大小,可得到一个连续的电压变化,这种连续的信号称为模拟信号,用来处理模拟信号的集成电路称为模拟芯片。

  通常情况下,一部手机主板使用的射频芯片占整个线%。随着智能手机迭代加快,射频芯片也将迎来新一波高峰。 目前,全球约95%的市场被控制在欧美厂商手中,甚至没有一家亚洲厂商能进入产业顶尖行列。 在物联网应用推动下,未来全球无线连接数量将成倍的增长。同时,未来由5G、物联网等对射频器件的爆发性需求会加速它的发展。

  滤波器: 用来滤除消除噪声,干扰和不需要的信号,从而只留下所需频率范围内的信号。 双工器,三工器,四工器和多路复用器通常采用多个滤波器的组合,手机中使用的滤波器主要采用 SAW(表面声波)、BAW(体声波)以及5G时代各大厂商积极布局的FBAR(基于薄膜体声波谐振器)和LTCC(低温共烧陶瓷)。

  传统SAW器件制造成本以及难度很高。 因此该行业存在着较高进入门槛。 目前国内大部分SAW滤波器厂商仍停留在公频波段(较低频率,低于1GHz)的产品生产中,主要用于低端市场。

  国产滤波器厂商想要在5G时代寻求更多机会,大部分已经开始选择围绕FBAR滤波器进行研发布局。 进入FBAR滤波器行业的有中电二十六所、五十五所和天津诺思,麦捷科技300319)、信维通信300136)也积极布局FBAR滤波器。 其中麦捷科技在SAW滤波器打入华为供应链后,也通过与中电二十六所的合作,有望跨了FBAR高性能滤波器的研发行列,而信维通信则是通过与中电五十五所合作将进入FBAR滤波器市场。

  5G根据频谱的不同可以分为Sub-6GHz和毫米波两种方案。 频谱是频率谱密度的简称,手机通讯信号传输都是通过一定频率传输的。 两者主要区别在于,毫米波为数据传输提供更好的分辨率和安全性,且速度快、数据量大,时延小,但是传输距离大幅缩减,Sub-6GHz的5G覆盖率是毫米波的5倍以上,毫米波为实现相同的覆盖率需要建设更多基站。

  美国政府尤其是军方将大量3-4GHz范围内的频段用于军用通信和国防通讯,因此美国5G主要以毫米波为主要频谱选择。 中国选择押注Sub-6GHz,联通、电信选择目前产业成熟度最高的3.5GHz资源(3400MHz-3500Mhz分配给中国电信,3500MHz0MHz分配给中国联通); 移动则在2.6GHz频段和4.9GHz频段上持续研发。

  是一种使用多根天线发送信号和多根天线来接收信号的传输技术。 实现在相同频带内的同一载波上传输不同的信息。 这种技术又被称为空间复用。

  CA 是将多个载波聚合成一个更宽的频谱,同时可以把不连续的频谱碎片聚合到一起,提高传输速率和频谱使用效率。

  5G发展Sub-6GHz和毫米波等新频谱是通信技术持续的前进方向。 新的频谱资源开发有朝更高频段、更大频谱使用范围发展的趋势,5G 通讯使用更高的频段,一方面是寻求更多可作为全球通讯使用的频段,另一方面是高频段拥有更宽广的频谱资源,能提供 Gbps 级传输应用服务。

  近年来,数字技术,特别是计算机技术飞速发展与普及,在现代军事和商用控制、通信等领域有着广泛的应用。 为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。 由于系统的实 际对象都是模拟量,如温度、压力、位移、图像等,需要将这些模拟信号转换成数字信号才能使计算机或者数字仪表识别、处理这些信号; 而经计算机分析、处理后输出的数字量往往也需要将其转换为相应模拟信号才能为执行机构所接受。 由此,就需要能在模拟信号与数字信号之间起桥梁作用的电路,即模数和数模转换器。

  得益于目前4G、5G通信的建设,移动基站的部署等行业因素推动,移动通信终端和便携式移动互联设备的增长等等推动,通信与消费电子领域仍然是信号转换模拟芯片的最大终端应用市场。 同时,汽车电子也成为继网络通信领域之后带动数模芯片市场增长的另一大领域。

  越来越多的移动设备进入了人们的生活: 智能手机、无人机、智能手表和电动汽车等。 这些移动设备的特点是不通过外接电源供电,电池是移动设备的电力来源,所以有效的电源管理对移动设备极其重要,电源管理芯片起着巨大的作用。 事实上,任何电子设备都需要电源管理装置。 作为电子设备的关键部件,电源管理芯片担负起对电能的变换、分配、检测及其它电能管理的职责,477777开奖现场201,其性能的优劣对于整机系统性能具有重要意义。

  对于电源管理芯片而言,其主要的应用领域包括汽车、通信、工业、消费类、计算等方面。 据IC insights的统计数据显示,2018电源管理芯片占模拟芯片规模接近三成,并持续保持增长态势。 据Yole预测,电源管理芯片将从多个关键终端市场获益,到2023年电源 IC 市场规模将增长至 227亿美元,2018-2023 年期间的复合年增长率(CAGR)将达4.6%。

  在国内市场上,电源管理芯片公司竞争较为分散。 其中,圣邦微电子、芯朋微电子、士兰微600460)、矽力杰、全志科技300458)、钰泰科技、上海贝岭600171)、南京微盟电子、比亚迪002594)微电子、芯智汇科技、华之美半导体等企业在国内市场占据领先优势。尤其是士兰微、圣邦微电子、芯朋微在国内最为领先,2018年其电源管理芯片销售额分别达6.63亿元、3.4亿元、3.12亿元。

  物联网可能是当今半导体芯片公司最关心的一个概念。 物联网旨在实现几乎所有领域的链接,万物互联。 不仅仅如目前智能家居、智能穿戴设备等细分领域,万物互联意味着跨领域的互联互通。

  这带来了另一个新词 IoE (Internet of Everything),一切事物都互联互通。 不仅是物理设备,所有的东西都将成为互联网络的一部分。 基于庞大的数据量和超强的云计算、边缘计算、AI的力量,一个数字化智能化的世界将赋能整个世界,AIoT、AIoE、万物智联将赋能整个世界。

  数据的收集、传输及数 据的处 理是智能互联三大支柱。 万物智联需要大量的传感器收集数据,对应模拟芯片的需求大幅增加;数据的传输推动带动无线通信芯片的发展,WiFi、蓝牙、ZigBee、5G等无线通信芯片将有巨大的发展空间;智能化要求AI芯片起着举足轻重的作用,场景化、差异化场景决定了ASIC作为专用芯片将更加有所作为。

  赛迪顾问2019年8月发布的《中国人工智能芯片产业发展白皮书》显示,2018年中国AI芯片市场整体规模达到80.8亿元,同比增长50.2%,在全球AI芯片市场占比最大,约占四分之一。

  国内芯片自主化是提升自身实力,避免受制于他人的必然要求,也是不可逆转的趋势。 目前,国内已经在芯片全产业链进行了布局,政策、国家资金都给予芯片产业链极大的支持。

  龙芯为代表的微处理器厂商正围绕国产CPU打造芯片生态,力争打造出区别于WIntel和ARM+Android构建的软硬件生态,推动芯片国产化的进程;寒武纪、依图、平头哥、地平线等 AI芯片企业也向世界证明着国内AI芯片的内在实力;中芯国际撑起高水平半导体制造业的自主化,进而促成整个设计、制造、封测产业链的完善,同时也为上游的本土半导体设备及材料厂商提供支持;越来越多有实力的方案解决商也不断的加速技术落地,打造智能化、数字化产业,为各行业赋能。